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ABSTRACT
SimpleJAVAcomputer codes for student use solving the T temperature
homework problems in an undergraduate heat transfer text on T(x) edge temperature distribution
a PC have been developetAVA was selected so that the Tu(X) wall temperature distribution
codes could be made available in a platform-independent form streamwise velocity
on the Internet. At this point, there are four codes for: 1)  yyx) edge velocity distribution
steady, conduction in two dimensions by finite differences, 2) Uins freestream velocity
unsteady conduction in two dimensions by finite differences, transverse velocity
3) laminar boundary layers with heat transfer by an integral axial and streamwise coordinate
method, and 4) turbulent boundary layers with heat transfer by y transverse coordinate
an integral method. A brief description of each code precedes B=3'/t,dp/dx Clauser pressure gradient parameter
the operating instructions. Also, a default input for a typical 5 v boundary layer thickness
example and results for that case are presented. 5 displacement thickness
0 momentum thickness
NOTATION 0. conductipn thickness
Co specific heat H \k/.'SCOS'tY , :
G skin friction coefficient v mgmath viscosity
H=3/0 shape factor P density
k thermal conductivity Tw wall shear
Nu Nusselt number
P pressure INTRODUCTION
Pr Prandtl number In this paper, we present simpJAVA computer codes
Qw wall heat flux that are intended for student use solving the homework
r(x) body thickness distribution problems in a standard undergraduate heat transfer text such as
Re Reynolds number Holman (1986) or White (1988) and other similar problems on
s(x) surface distance a PC or Work Station. TheJAVA language (see
St Stanton number www.javasoft.comwas selected so that such codes could be

: i ) made conveniently available in a platform-independent form
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calculations. Thus, primitive variabled,§,v); (x,y,) are
employed with no transformations.

At this point in the development, there are four separate
codes for: 1) steady, heat conduction in two dimensions by
finite differences, 2) unsteady heat conduction in two
dimensions by finite differences, 3) laminar boundary layers
with heat transfer by an integral method, and 4) turbulent
boundary layers with heat transfer by an integral method. All
the codes presume constant values of the density and
thermophysical properties, so they are limited to low-speed
cases with modest temperature differences. A brief description
of each code precedes the operating instructions. Also, a
default input for a typical example and results for that case are
presented and discussed.

These codes are meant to relieve the student of the time
consuming burden of writing, modifying and/or debugging
numerousFORTRANor other similar codes during a heat
transfer course. The hope is to thereby leave sufficient time
and energy for the working of actual heat transfer problems of
reasonable complexity to build understanding and intuition.
The student is not, however, relieved of the burden to think.
One should always estimate the answer the computer solution
is expected to yield. For example, one could use the exact
solution for a simpler heat conduction problem to crudely
estimate the level of the surface heat flux to be expected in a
more complicated case. The student is the analyst, not the
computer, and he or she is responsible for producing and
interpreting the correct answer.

Conduction heat transfer problems require specification
of the geometry and boundary and initial conditions.
Thermophysical property values of thermal conductivity,
specific heatc, ,and densityp, are needed. Next, the grid
must be created.

For any boundary layer convection heat transfer
problem, one must specify the fluid through densipy,
conductivity,k, specific heatg, , and viscosityy, or perhaps
just kinematic viscosity,v. The next information needed
would be the freestream velocity,; and the inviscid edge
velocity distribution,U¢(x). Also, the wall temperaturd,(x),
or the wall heat transfer distribution afgs and T(x) are
required.

Finally, the computational region and grid must be
selected. The differential methods require the height and the
length of the computational region. The codes here are all
based on untransformed and unmapped forms of the equations
for simplicity. Thus, cartesian grids are used throughout. For
heat conduction problems, the computational region must be at
least as large as the body of interest in all dimensions. The
grid spacingdx anddy must be selected so that the geometry
and the variations in the boundary conditions can be
accurately represented. In the interests of simplicity, we have
allowed only geometries where the boundaries fall on grid
points. It is possible to adequately represent very complicated
geometries within that restriction by employing a fine grid.
For the integral methods for heat convection included here,

one need only pick the length of the flow of interest and the
streamwise grid sizejdx. That grid must be fine enough to
accurately represent the variations in the boundary conditions
such asJe(x), Te(X) andT,(x).

PROGRAM STDYCOND

This program treatSTeeDY CONDuction heat transfer
in two spatial directions by a numerical method. The thermal
conductivity is taken as constant. Central finite differences are
used to replace the differentials in LaPlaces Equation which
governs such problems. This results in a system of algebraic
equations, one at each interior grid point relating the
temperature at that point to that at four neighboring points.
The system is solved by the Gauss-Seidel iteration technique.
See Holman (1986) or White (1988) for a description of the
general approach.

The user can specify either temperature or heat flux as a
boundary condition at each grid point on the boundary.

A default input set is included for the following problem.
Example Steady, 2D Heat Conduction Problem: The problem
is steady heat conduction in a 2X1 ellipse of aluminum. The
temperature on the top half of the boundary is 100C, and that
on the bottom half is 50C. What is the temperature pattern in
the interior?

Solution:

First, note that the solutions for steady heat conduction
problems with constant properties are actually independent of
the values of the thermophysical properties; LaPlaces equation
doesn’t contain any coefficients.

The 2X1 ellipse is represented in this sample input with a
relatively coarse grid to keep the file size modest. Look at Fig.
1. When you launch the Applet, the input geometry and
boundary conditions for the temperature are shown in the
window in the lower left-hand corner. The first two entries are
the grid spacings in theandy directions. This is followed by
four columns of input withx, y andT for each boundary
point. The 1's in the last column indicate that this is a
temperature boundary condition. (Use 2 for a heat flux
boundary condition.) The region and the grid are displayed
above the input panel. The solution is iterative, and the initial
guess for the temperature in the interior is given below this
window. Push th€ OMPUTEDbutton at the bottom and see the
results in the simple isotherm plot in the upper right-hand
corner. The tabular output is in the window in the lower right-
hand corner. The tabular output can also be easily copied into
EXCELfor printing and plotting. Below that window, one can
see the number of iterations required to obtain a converged
solution. One can change the initial guess for the temperature
in the interior and see how that affects the iterations required.

It is very easy to change the temperatures on the
boundary and recompute the temperature distribution. To
change the grid spacing and/or the geometry, it is necessary
for the user to create an input file working offline. BKCEL
spreadsheet is very convenient for that task. One can then “cut
and paste” the new input data into the input panel.
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PROGRAM UNSTDYCOND

Here, we solvdJNSTeaDY CONDuction heat transfer
problems in two spatial directions by a numerical method. The
thermal conductivity is taken as constant. Central finite
differences are used to replace the spatial differentials in the
2D Heat Equation, which governs such problems. The time
derivative is approximated with an implicit finite difference
representation. Refer to Holman (1986) or White (1988) for
details of the general approach.

The user can specify either temperature or heat flux as a
boundary condition at each grid point on the boundary. Since
these cases are unsteady, an initial temperature distribution at
every grid point on the boundary and in the interior must be
given.

A default input set is included for the problem described
below.

Example Unsteady, 2D Heat Conduction Problem: Let us
consider an unsteady equivalent of the steady problem treated
above. The problem is now unsteady heat conduction in a 2X1
ellipse of aluminum. The temperature over the whole region is
100C at timet = 0. Fort > 0, the temperature on the top half

of the boundary is held fixed at 100C, and that on the bottom
half is set to 50C. What is the temperature pattern in the
interior as a function of time? How long does it take to
approach steady state?

Solution:

In this case, the thermophysical properties are needed,
because the thermal diffusivitk/c,p, enters into the Heat
Equation. The values for aluminum at about 75C are shown in
the column at the lower left of Fig. 2. The geometry and
boundary conditions are given in the panel to the left in the
same format as for the steady calculation above. The region
and the grid are displayed above the input panel.

Push theRUN button at the bottom and watch the results
develop as a function of time in the simple isotherm plot in the
upper right-hand corner. The tabular output is in the window
in the lower right-hand corner. The elapsed time is shown in
the line below the output table. The results shown in Fig. 2 are
for a time well before steady state is reached for this problem.
The FORWARDbutton at the bottom advances the solution
one time step at a time.

There is an analogy between iterations to find a steady
solution as in the sample problem above and time steps in an
unsteady problem approaching a steady-state solution as in
this case. If the initial “guess” used in obtaining the steady
solution is the same as the initial condition for the unsteady
problem, the correspondence is close and one could watch the
solutions develop iteration-by-iteration or time step by time
step and compare the behavior.

PROGRAM WALZHT

This program is an implementation of the Thwaites-
WALZ and Smith-Spalding integral methods for
incompressible, laminar boundary layer flows witheat
Transfer. Refer to Sec. 2-3-2 in Schetz (1993) and Smith and

Spalding (1958) for a description of the technique. The
method is limited to flows with constant thermophysical
properties and a constant wall temperature. It can treat cases
with sharp or blunt leading edges, planar or axisymmetric
geometries and arbitrary inviscid velocity variations.

A default input set is included for the following flow
problem.

Example Laminar Integral Method Probleronsider 2D
laminar flow of a fluid with a kinematic viscosity = 1.6x10°
/s, g = 1005 J/kg/Kp = 1.2 kg/ni and Prandtl numbe®r =
0.72 atU;x = 2.0 m/s over a surface that is a flat plate from the
leading edge tx = 1.0 m. At that station, a ramp begins that
produces an inviscid velocity distributidh(x) = 2.1 -x/10, m/s.
This is an adverse pressure gradient, slicés decreasing so
that p increases. Choose the wall to freestream temperature
difference, T, - Te = 20C. Calculate the boundary layer
development over this surface upxe 2.0 m. Does the flow
separate? Note how the dimensionless wall sh€&arand
dimensionless heat transfdly, vary in the constant pressure and
varying pressure regions along the surface.

Solution:

We must provide input data for the kinematic viscosity as
= 1.6e-5, Prandtl numbé&r = 0.72,c, = 1005,p0 = 1.2 and the
freestream velocity ddi; = 2.0. SelecNMAX= 41 to givedx =
0.05.

The body thickness distributior(x), can be specified. The
code will then calculate the surface distance along the body. The
default isr(x) = 0.0. Also, one must choose either a planar or
axisymmetric geometry.

Finally, the inviscid velocity distribution is required. Since
this case has a bi-linear edge velocity variation, velocities at only
a few points including;; andxg, need to be specified to define
the distribution. The wall to edge temperature distribufipra T
is specified in the same way.

The window in Fig. 3 shows the input information for the
default case. On the left are two panels containing the input data
for this case. The input data in the far left panel can be changed
by selecting the item to be changed with the menu button,
entering the new value in the slot below and pusBEg The
input data in the next panel to the right can be changed in a
similar manner. One might wish to change the dimensionless
edge velocity distributionJJ/U;¢ , the body shape and/or the
temperature difference. All that is required is to enter or modify
sets of values fox, r, UJU;; andT,-Te in the panel below and
pushSET The code will fit a spline through the points used as
input.

Then, press theSTART button and watch the integral
guantities and the skin friction and heat transfer results develop
in the graphs on the right. Use the panel in the upper right hand
corner to select which sets of results are displayed. The window
given in Fig. 3 shows the results at the end of the calculation.
Tabular values of the output can be accessed in the panel
indicated. One can scroll up and down in the table with the slider
bar and left and right with the cursor. Some browsers display the
table starting at the bottom, so it may be necessary to scroll up to
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see the column headers. The tabular output can also be easily program so that the student can plot them in a presentable

copied intoEXCELfor printing and plotting.

PROGRAM MOSESHT

Here, we present a code for M®SES integral method for 2D,
incompressible, turbulent boundary layers extended to include
Heat Transfer with the approximate integral energy equation
method of Ambrok as described in Kays and Crawford (1980).
Refer to Sec. 7-7 in Schetz (1993) for the theory behind the
original Moses method.

The method is Ilimited to flows with constant
thermophysical properties. It can treat cases with arbitrary
inviscid velocity and wall temperature variations.

Example Turbulent Integral Method Proble@onsider 2D
turbulent flow of a fluid with a kinematic viscosity= 1.0x10°
m’/s, Prandtl numbe®r = 5,¢, = 4187,0 = 1.2 atU;s= 10.0 m/s
over a surface that is a flat plate from= 0.0 to 5.0 m. Calculate
the boundary layer t& = 7.0 m assuming a simple inviscid
velocity distributionU¢(x) = 10 m/s = constant. The temperature
difference is 10K; what is the heat transfer?

Solution:

We must inpuv = 1e-5,Pr = 5,¢, = 4187, ancp = 1.2.
Since the first part of the flow is over a flat plate, the simple
integral solution (see Sec. 7-7 in Schetz, 1993) can be used
giving & = 0.0857 m. Takest = 6.89e-4 at the initial station.
Also, at the initial station the pressure gradient pararfieted.

Pick NMAX = 21 corresponding tdx = 0.10 m, which is
about the size of the initial boundary layer thickness.

This case has a simple edge velocity variation, so velocities
and temperature differences can be specified at only two points,
atxinit andxﬁn-

The two panels on the left in Fig. 4 contain the input data
for this case. The input data in the far left panel can be changed
by selecting the item with the menu button, entering the new
value in the slot below and pushiB&T The input data in the
next panel to the right can be changed in a similar manner. The
user can modify the dimensionless edge velocity distribution,
UJUis and/or the temperature differencg,-T.. All that is
necessary is to enter or modify sets of values<fand UJU;
andT,-Te in the panel below and puSIET

Now, press theSTART button and watch the integral
quantities and the skin friction, heat transfer develop in the
graphs on the right. Use the panel in the upper right hand corner
to select which sets of results are displayed. The window in Fig.
4 shows the results at the end of the sample calculation. Again,
tabular values of the output can be accessed in the panel
indicated, and one can scroll up and down in the table with the
slider bar and left and right with the cursor.

DISCUSSION

All of these programs make use of tabular input (of edge
velocity and coordinates) and tabular output (of boundary
layer parameters and profiles). Data may be copied into or out
of these tables using standard cut/paste/copy operations. For
example, results may be pasted iEXCEL or a similar

form.

This compatibility with the ‘clipboard' and other native
applications is a very important element of the programs, since
it largely overcomes the limitation afAVA programs not
being able to read or write files on the hard disk. It also opens
up the possibility of developing a suite of applets that the
student can use in combination to investigate the solution to
more general problems. For example, we are in the process of
developing a panel code applet and an applet to determine
transition location given laminar boundary layer parameters as
a function of streamwise distance. Given a geometry in the
form of a paneling scheme, the panel code will provide edge
velocity and coordinates as table output, and these may then
be pasted into th&/ALZHT program and a laminar boundary
layer computed. Results frofWVALZHT may then be pasted
into the transition calculator whose output is used to initialize
one of the turbulent boundary layer applets.

The current suite of codes can be found under Heat
Transfer Applets at:http://www.engapplets.vt.eduPrimary
candidates for upgrades and further codes in the near future are
the addition of heat generation to the conduction codes new
codes for numerical solution of compressible, laminar and
turbulent boundary layers and one for radiation heat transfer.

ACKNOWLEDGEMENT
William Devenport acknowledges the support of the
National Science Foundation under grant DUE-9752311

REFERENCES

Holman, J.P., 1986, Heat Transfer, McGraw-Hill, New York,
NY.

Kays, W.M. and Crawford, M.E., 1980, Convective Heat and
Mass Transfer, McGraw-Hill, New York, NY.

Schetz, J.A., 1993, Boundary Layer Analysis, Prentice Hall,
Englewood Cliffs, NJ.

Smith, A.G. and Spalding, D.B., 1958, “Heat Transfer in a
Laminar Boundary Layer with Constant Properties and
Constant Wall Temperature,” Journal of the Royal
Aeronautical Society, Vol. 62, pp. 60-64.

White, F.M., 1988, Heat and Mass Transfer, Addison-Wesley
Publishing Co., Reading, MA.

Copyright © 1999 by ASME



-D Steady Heat Conduction Numerical Simulation

-15.0 -70 SO0
<160 .80 500
170 -50 500
-180 -40 S00
-19.0 -30 500
-19.0 -20 00

Figure 1. Sample input and output for the default case from the STDYCOND code.

Figure 2. Sample input and output for the default case from the UNSTDYCOND code.
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| E%_%WALZHT - Laminar boundary layer with heat transfer using Thwaitez-Walz and Smith-5palding methods [_ (O] x|

rff;’Dﬂfgf? | TR INFET AT TFLT delta, delta®, theta, thetac -
. sharp Le. . _ )
‘®) 70 s = v/l AL, UedUinf, Tw-Te elt: i
= 3D stagnation pt. {* BL Parameters
Ending »/L =2
Mo, of & steps = 41
Wiscasity (m”24z) = 1.6e-5 wiL L =
Freestream wvelocity [mAs] = 2 DS-DDDUDUDUE;ESS ggggg::gg
Density [kg/m™3) = 1.2 1.0000e-001 0.0000=+00
Prandil number = 0.72 1.5000e-001 (0.0000e-+00
Specific Heat [J/kg/K] = 1005 2.0000e-001 0.0000e+00
Reference length L [m] = 1 2.5000e-001 0.0000e+00
— = 3.0000e-001 0.0000+00
| nding » 3.5000=-001 0.0000e-+00
| RV _>IJ
SET |
Figure 3. Sample input and output for the default case from the WALZHT code.
ggHDSESHT - Integral turbulent boundary layer with heat transfer using Moses" method [_ (O] x]
;f‘»’f"ﬁfﬂ‘?ﬂ_ : T E ENFLTAGEITRT delta, delta”, theta -
tarting =/L = .
Ending »/L = 7 2L Uedlint, Tw-Te
Initial delta [m] = 0.0857 %' BL Parameters
Initial Stanton no. = B.6854e-4
Mo, of » steps = 21 -
Wiscosity (™27 = 185 Hgl'uunu - '-_IIBEI“DUDIBF - =
Freestream velocity [mds] = 10 51 EIEID:DEIEI 1'0000210[
Aeliznznce Lerglin L (] = | EO000+000  1.00008+0L
Density [kag/m™3] = 1.2 E.3000=+000 1.0000e-+01
Prandtl number = 5 5.4000=+000 1.0000e-+0C
Specific Heat [J/kasK) = 4187 5.5000e+000 1.0000e+0C
- =] 5. G000=+000 1.0000e+0C
[Starting /L 5, 7000=+000 1.0000=+0C _
| || _>I_I
SET |

Figure 4. Sample input and output for the default case from the MOSESHT code.
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